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Federal Republic of Germany 
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Abstract. Using recent band-structure results obtained in the local-density scheme, the 
microscopic longitudinal dielectric function for both the diagonal and the non-diagonal 
elements is evaluated in the random-phase approximation in the energy range up to 2.5 Ryd. 
In addition, the influence of exchange and correlation is investigated in a self-consistent way 
within the time-dependent density-functional approach. We have found that the latter may 
modify the frequency dependence of the real elements of the dielectric matrix by up to 15%, 
whereas some imaginary elements are changed by up to 40%. In the long-wave limit, the 
local-field corrections of the macroscopic dielectric function seem to be negligible for most 
frequencies. For the diagonal elements of the inverse dielectric matrix with non-zero recipro- 
cal lattice vectors, local-field corrections increase the real parts by up to 10% at low frequen- 
cies, whereas at higher frequencies their influence is quite small. The imaginary parts 
are decreased over the whole frequency range by up to 30%. For all spectra, local-field 
corrections smooth the structures and the inclusion of exchange and correlation decreases 
the values of the elements of dielectric matrix. In addition, for realistic wavefunctions, the f 
sum rule turned out to be badly fulfilled. Plausible arguments for this failure are presented. 

1. Introduction 

In a many-electron system, an external potential Vext(r,  t )  is more or less screened by a 
redistribution of electrons. Formally, this may be described by the inverse microscopic 
dielectric function defining the screened potential [ l ,  27,541 

Vscreen(r, t )  = ~ ' ( r ,  r ' ,  t - t ' ) v e x t ( r l ,  t ' )  d3r '  dt '  

or its space-time Fourier transform in a crystal 

Vscreen (4 + ~7 U> = 2 (4 + K ,  + K '  7 0 ) v e x t  (4 + K ' ,  ( 2 )  
K' 

In equation ( 2 ) ,  q is limited to the first Brillouin zone, and K and K' denote reciprocal 
lattice vectors. The non-diagonal elements C 1 ( q  + K ,  q + K ' ,  U )  describe the so-called 
local-field corrections [l, 32,541, e.g. the rapid oscillations in the response of the solid 
produced by a slowly varying perturbation Vex,. The inverse dielectric function is essen- 
tial for the understanding of the various phenomena in solid state physics [46,47]. We 
do not claim that the following list is complete: 
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(i) the scattering of electrons by lattice defects; 
(ii) the scattering of electrons by phonons which determines not only the electron- 

phonon interaction but also the force parameters in lattice dynamics; 
(iii) typical magnitudes of the many-body theory, e.g. the total energy, the pair- 

correlation function and the structure function; 
(iv) the plasmon-like collective excitations; 
(v) the optical parameters. 

Up to now, the dielectric function has been evaluated directly within the framework 
of the Hartree-Fock theory, which approximates the many-body wavefunction for 
the ground state and the excited states by a sole Slater determinant [46]. A further 
simplification is possible by neglecting the interaction between electron-hole states. The 
latter approximation is sometimes called the Hartree approximation. It is generally 
believed that the so-called random-phase approximation (RPA), which follows from a 
severe many-body analysis [23,27,35], from the use of double-time Green functions [8] 
or an investigation of the electron-hole propagator [21], gives a far better approach to 
the dielectric phenomena. These procedures give the microscopic dielectric function in 
terms of one-electron wavefunctions and one-electron energies. The inverse problem 
of the dielectric function according to 

C 1 ( r ,  r”,  o)&(r” ,  r’ ,  o) d 3r‘’ = S(r - r’)  I (3) 

still remains [26]. As long as the perturbation slowly varies in space, it could be reduced 
to a simple matrix inversion. 

Expressions of the dielectric function, in terms of one-electron magnitudes, may be 
derived by use of a self-consistent method, as long as only the Coulomb interactions are 
taken into account. This was first done by Bardeen [5], in order to understand the 
electron-phonon interaction and later continued by Hone [30] and Bailyn [3]. 

It is tempting to go beyond the Hartree approximation within the framework of 
the local-density formalism (LDF) [29,37]. This scheme allows us to determine self- 
consistently the charge density Pind, produced by a static external potential Vext: 

pind(r, 0)  = [&- l (r ,  r ’ ,  0 )  - 6(r - r’)]Vext(r’, 0) d3r’. J (4) 

Conceptually, this treatment is completely different from that applied by Gupta and 
Sinha [24], who approximated the electron-electron interaction by a Hubbard-type 
correlation. For dynamical problems the generalisation of equation (4) may be derived 
by the use of the time-dependent local-density-functional approach (TLDF) [19,50,55]. 

As we shall see in section 2, exchange and correlation have no influence on the 
diagonal element E ( q ,  q, w) in the long-wave limit. However, when going over to the 
inverse dielectric function, corrections are to be expected, owing to the non-diagonal 
elements E ( q  + K ,  q + K ‘ ,  0). Apart from investigations done by Kubo [38] which were 
performed in the static case, no quantitative investigations for a real solid are known 
which allow a definite conclusion as to whether local-field corrections might be impor- 
tant. Owing to the localised character of d electrons, they certainly become more 
important in noble and transition metals than in free-electron metals. Therefore, we 
have performed extensive investigations in the case of Cu, for which the electronic 
structure has been derived by a modification of the APW method [9,10,12]. 
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As a by-product, we have found that the f sum rule, tacitly assumed to be valid, is 
not well satisfied as a consequence of the Coulomb singularity of the potential yielding 
radial wavefunction behaviour like P,(X, Y ,  Z)[1 + Z r / ( l +  l ) ]  near the origin. Here Z 
denotes the nuclear charge and P,(X, Y ,  2) is a harmonic function of degree 1. Appli- 
cation of the momentum operator generates a term of kind P,+,(X, Y ,  Z ) / r  which does 
not belong to the function space of the original function. Thus an infinite number of 
the original functions are necessary to describe the Pl+,(X, Y ,  Z ) / r  behaviour. In the 
pseudopotential approximation this problem will not occur as the corresponding term 
P,(X, Y ,  2) is not present in the original wavefunctions. 

This paper is organised as follows: explicit expressions for the dielectric function are 
derived within the framework of the self-consistent LDF in section 2. Section 3 deals with 
the accuracy of the matrix elements of the momentum operator evaluated by using 
realistic wavefunctions. Details of the work, as well as the reliability of some well known 
sum rules are discussed in sections 4 and 5 .  Sections 6 and 7 deal with the calculated 
dielectric matrix, its inverse and the comparison with experimental results. Finally, in 
section 8 some conclusions with respect to future investigations are given. 

2. Self-consistent evaluation of the dielectric function by use of the local-density formalism 

The LDF was originally conceived to determine the ground-state properties of a many- 
body problem. Its extension to dynamical problems, the TLDF approach [19,50,55], is 
not so well founded. It is based on the assumption that a one-particle density p exists for 
any external potential Vex,. Then, the variational derivative of p with respect to Vex, may 
be considered as the polarisation function 

a ( l , 2 )  = e2 apind(1)/aVext(2). ( 5 )  
At least, for external potentials slowly varying in time, we may proceed analogously as 
in the LDF. A set of one-particle functions is defined by the Schrodinger-like equation 

( I P I ~ / ~ ~ ) v ( ~ )  + Veff(r, t ) ~ , ( r )  = ifi+(r) (6) 

where the effective potential Veff is defined by 

Veff(r, t )  = Vo(r) + 8Vext(r, t)  + e2 -/ - p ( r ’ )  d3r’  + Vx,[p(r)] 
/ r  - r’l (7) 

and Vo(r) is assumed to be the periodic part of the external potential. As usual, V,, is 
the local approximation for correlation and exchange. 

For vanishing dVext(r, t ) ,  equation (6) defines a complete and orthogonal set of 
eigenfunctions (rl k )  from which the unperturbed charge density can be evaluated 

pO(r) = 2 2 (klr)(rlk)@(EF - &k)a 
k 

Correspondingly, the Fermi energy EF is defined by the implicit equation 

N =  2 2 @(E,  - & k ) .  
k 

(9) 

In equations (8) and (9) the index k denotes both the band index n and the wavevector 
k which is restricted to the first Brillouin zone. 
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In order to take into account the time-dependent external potential, we use the first- 
order Dirac perturbation theory and assume that at t -  --CO the external potential 
Vext(r, t )  is adiabatically switched on to 

6Vext ( r ,  t> = [Vext(r, 0) exp(-iwt) + VCxt(r, w) exp(iwt)] exp(qt) (10) 

where q + 0’. 
Owing to the invariance with respect to time translation both dVeff(r, t )  and the 

change 6p(r, t )  in the charge density will have the same time-dependence. At any time 
--CO < t < 0 we can determine the charge density p ( r ,  t )  by a relation analogous to 
equation (8) but (rlk) is substituted by q ( r ,  t ) .  Up to linear terms in the perturbation, 
the Fourier transform of the induced charge density reads 

Insertingpind(r, w) into the Fourier transform of equation (7) we get an integral equation 
for the effective potential 6Veff which may be formally written in the form 

where the kernel is simply the dielectric function obtained self-consistently 

&SCF(r,  r’ ,  0) = 6(r  - r ’ )  

(kjr‘’)(r”(k’)(k‘Jr‘)(r’/k) 
k ’ # k  @ ( E F - & k ) (  &k’  - - hw - iyh 

It coincides with the usual expression derived by an extension of the RPA when the terms 
multiplied by dVx,/dp are neglected [l, 27,541. The latter terms describe corrections of 
the dielectric function within the framework of the LDF at least in the limit w - 0. In this 
limit, equation (13) could also be derived with help of the time-independent perturbation 
theory. For any static external potential the wavefunction cp(r) of the time-independent 
version of equation ( 6 )  may be expanded in terms of the complete set (rlk).  Using many- 
body techniques, the same relation (13) was derived by Weber [53]. To our knowledge, 
corrections of the dielectric function as given in equation (13) have only been used to 
achieve faster convergence in self-consistent electronic structure calculations [28]. In 
the case of the free-electron metals, several workers have used a similar approach to 
determine the linear response to an external field [20,40,44]. 
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The time-space Fourier transform of defined by 

& s c F ( q ,  q’ ,  0) = &SCF(r, r ’ ,  w )  exp(-iq - r )  exp(iq‘ - r‘)  d3r  d3r’  

may be decomposed in the following way: 

&SCF(q, q ’ ,  = + [ a H ( q ,  q’,  + @ x c ( q ,  q ‘ ,  

whereby the Hartree term of the non-interacting system is given by 

(kl exp(iq’ r’)lk’)(k’l exp(-iq r)jk) + 
&k’ - & k  + hw + iqh 

Exchange and correlation effects are described by 

(kid Vx,/dp) exp(-iq * r)lk’)(k’[ exp(iq’ - r’)lk) 
&k’ - &k - hw - iqh 

(17) 
(k /  exp(iq’ - r‘)lk’)(k’/  exp(-iq r) (dVxc/dp)lk) + 

&k’ - & k  + hw f iqh 

The close similarity of both expressions is quite remarkable. Note that in both 
expressions the energy denominators are the same. As they characterise the same 
van Hove singularity, the exchange and correlation corrections will not shift the edge 
structure of eSCF significantly. As we shall see in the following, the derivative dVxc/dp 
shows slow variation within the atomic polyhedron with the consequence that for small 
values of q and q’ we may approximately write 

axc(4,4‘ ,  w )  = (42/4ne2)(dV,,/dP)@H(q, q‘,  w) (18) 

where dV,,/dp is a suitably defined average of dVxc/dp over an atomic polyhedron. The 
frequency dependence of the dielectric function corrected by exchange and correlation 
will look quite the same as in the case of the non-interacting system (see figures 6 8 ) .  

The above result has another peculiarity. In the long-wave limit, the Coulomb 
interaction will survive in the expression for &(q, q ’ ,  U) .  Thus the inverse dielectric 
function of a crystal defined by 

where q is restricted to the first Brillouin zone and where the sum goes over all reciprocal 
lattice vectors will be corrected only by exchange and correlation when non-diagonal 
elements of &(q + K ,  q + K ’ ,  w )  are taken into account. Equations (15)-(17) are the 
basis of the evaluation of the dielectric function, using realistic many-body structure 
results. The following steps have to be performed. 

(i) The matrix elements of the plane-wave operator must be evaluated. Owing to the 
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periodicity of the Bloch function, the matrix elements (n’,  k + q + K’l exp[i(q + K )  - r]I 
nk) are non-zero. The reciprocal lattice vector K‘ guarantees that k + q + K’ lies in the 
first Brillouin zone. 

(ii) The occupied states (nk)  and the complete set of the states (n ’k ’ )  should be 
summed. 

3. The accuracy of the matrix elements of the momentum operator 

Because of the variational character of the APW method, the calculated wavefunctions 
are much less accurate than the electron energies. This greatly affects the optical matrix 
elements and it is interesting to check how accurate these might be. In the past, such an 
analysis was done by Uspenski et aZ[51] on the basis of LMTO wavefunctions. 

In the long-wave limit, the matrix elements (n’,  k + ql exp(iq r)lnk) are usually 
expressed by the matrix elements of the momentum operator by use of the k-p formalism, 
which is based on the completeness of the Bloch functions. As the set of functions 
generated by the usual band-structure calculation is finite?, we cannot expect this 
property to be well fulfilled. However, a similar identity may be derived from the fact 
that both Ink) and In’, k + q) are solutions of the Schrodinger equation [41]:  
(n’, k + q1 exp(iq r)(nk) = ( h / m )  

x q{(n’, k + q1 exp(iq * r)plnk)/[&n’,k+q - Erik - (h2/2m>q21>. (20) 
Up to the term (h2/2m)q2 in the denominator the same expression is quoted in [51] .  As 
the right-hand side is still linear in q, we may set q equal to zero in all other factors in the 
case n’ # n. Thus, up to terms linear in q we arrive at 

and 

VEnk = (h/m)(nklplnk). (22) 
Provided that the state (nk) is not degenerate, iteration up to the second order in q gives 

where c&k is the periodic part of the Bloch function. Only by explicit use of the com- 
pleteness relation 

do we arrive at the f sum rule 

From this consideration we must conclude that only the diagonal matrix elements of the 

t The MAPW formalism described later, gives up to 100 Bloch functions for a certain value of k.  
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momentum operator may be checked directly by using equation (22). For that purpose, 
it is essential that the gradient of the energy may be obtained with the same accuracy as 
the energy itself, either by numerical differentiation or directly from band-structure 
calculations. For example, in the case of the MAPW formalism the matrix characterising 
the general eigenvalue problem is an analytic function of the wavevector. In principle, 
numericalvalues of the second derivative d 2 ~ , k / ( ~ k i  dkj )  may also be found with slightly 
less accuracy. We believe that equation (25) is a more severe test of whether the 
summation over n’ includes a sufficient number of bands than for the accuracy of the 
non-diagonal matrix elements. The same is true for the criterion based on the expectation 
value of the kinetic energy in the Bloch state: 

On the other hand, tests based on equations (25) and (26) shed some light on the question 
of how reliable the evaluation of the dielectric function using equation (15), which is 
also based on the completeness of the Bloch functions, might be. Certainly, equation 
(20) is a far better starting point for the test of the accuracy of the non-diagonal elements 
of the momentum operator as it gives 

(n’klp,lnk) = (m/h)(En,k - ~,k)(a/aqj)((n’, k + ql exp(iq * W ) ) q = o .  (27) 

4. Details of the numerical work 

4.1. Band-structure calculation 

The wavefunctions Ink) and the energies &,k have been evaluated by the MAPW formalism 
[9,10, 121, using a self-consistent potential derived by two of the present authors [16]. 
These investigations are quite analogous to those applied in the case of A1 [ 141 or Li [15] 
and have been done for a warped-muffin-tin potential neglecting multipole moments. 
For each angular momentum 0 S 16 2, we have used four different radial functions 
&(r) which are chosen in such a way that the logarithmic derivative is either + 1 or - 1. 
All plane waves with 

are considered. Depending on the value of the k-vector, 70-75 different bands have 
been obtained covering an energy range up to 10 Ryd above the Fermi level. All these 
bands are taken into account in the following investigations. In contrast, Kubo [38] has 
considered only 11 different bands. Exchange and correlation effects have been taken 
into account by using the empirical formula proposed by van Barth and Hedin [52] with 
parameters taken from Moruzzi et al[43]. For details we refer to the work to be published 
by two of the present authors [16]. 

According to equation (17), exchange and correlation corrections of the dielectric 
function depend strongly on the function dVxc/dp. Figure 1 shows its dominant spherical 
contribution within the APW sphere. From this curve, we learn that dVx,/dp is weakly r 
dependent. Its magnitude may roughly be approximated by 

Ik + KI2 6 15.0(2n/a)2 (28) 

- 
d r  = -4.3832au 

and causes cxc to be opposite in sign to cH. Thus, these many-body corrections reduce 
the magnitude of the dielectric function E ( q ,  q ’ ,  o) with increasing value of 141. 
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0 0.5 1.0 1.5 2 .o 
r i a u )  

Figure 1. The spherical mean value of the deriva- 
tive of the exchange and correlation potential with 
respect to density as a function of r (au). 

4.2.  Matrix elements 

Within the framework of the MAPW scheme, the explicit expression for the matrix 
elements (n’klplnk) and (n’, k + q( exp[i(q + K )  - rllnk) are quite lengthy and are pre- 
sented elsewhere [7,41,48]. As these expressions consist of only finite sums, they may 
be evaluated with any accuracy wanted. Thus, only systematic errors occur which are a 
consequence of the fact that the MAPW formalism solves the Schrodinger equation by a 
finite Ritz ansatz. By the way, we would like to mention one peculiarity of the MAPW 
formalism. As it yields wavefunctions, which, as well as their first derivatives, are 
continuous everywhere in the atomic polyhedron, the matrix elements (n’klplnk) are 
exactly Hermitian. In the case of the APW scheme [49] or KKR scheme [36] this property 
could be achieved only by assuming specifically chosen surface terms. In this respect the 
expression for the matrix elements given by Chen [18] is deficient. For the LMTO method 
such corrections have already been proposed [39]. 

4.3. Integration procedures 

Similar to a former paper [13], the Brillouin zone was divided in small cubes with 
the length (1 /M) (2n /a ) .  The centres of these cubes were chosen to be magic points 
[4, 17,421. All slowly varying functions, e.g. the matrix elements, are approximated by 
their values at the cube’s middle point ki. Inside each cube the arguments of the Heaviside 
and the delta functions are expanded in terms of the deviation k - ki. Special routines 
were developed for evaluating the remainingintegral[13,41]. The final evaluations have 
been done for M = 4 yielding ten different k-points in the irreducible wedge. 

5. Accuracy of the numerical procedure 

Most of the following tests have been performed for the wavevector k = ( 2 n / a )  
(0.75,0.25,0.25). 

5.1. Diagonal matrix elements of the momentum operator 

For the occupied d bands and the other valence bands with energy up to 5 Ryd above 
the Fermi energy, the deviations from the corresponding values of V E , ~  are less than 
2%. The absolute deviations for the 3s and 3p states are found to be of the same order 
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2.8 

0.3 1 
0 20 40 60 80 

Bond index n 

Figure 2. Test of the non-diagonal matrix elements of the momentum operator: the ratio 
(nk'kip, lnk)/(m/~)(&",~ - &,k)(d/itq,)((n', k + q1 exp(iq r)/nk)),=ofor the band n' = 6 and k = 
(2n/(u) (0.55,0.45,0.25) versus the band index n. 

as the latter states but, as these matrix elements are two orders of magnitude smaller 
than those of the valence bands, the relative error is quite large. For the bands with 
energies more than 5Ryd above the Fermi level, the Ritz ansatz in general badly 
approximates the wavefunctions. The consequence is that the relative error may reach 
100% but, for some states which are almost plane wave like, quite close agreement has 
been found. Then, both Ink) andpink) are well approximated by a superposition of plane 
waves. 

In comparison with the test given in [51], we can conclude that the MAPW formalism 
yields the diagonal elements of the momentum operator with a considerably higher 
accuracy than the LMTO formalism does. This is certainly because, firstly, the MAPW 
functions are continuous everywhere in the atomic polyhedron and, secondly, our Ritz 
ansatz is more flexible. 

5.2. Non-diagonal matrix elements of the momentum operator 

A test based on equation (27) needs knowledge of the k-derivative of the periodic part 
of the Bloch function which may be obtained from the MAPW eigenvalue problem, too. 
Figure 2 shows equation (27) for q along the z direction, for the band n' = 6 and k = 
(2~c/a)(0.55,0.45,0.25) for all bands produced by the MAPW formalism. For most bands 
the relative error is of magnitude 20%, with the tendency that it becomes larger at higher 
bands. These results do not support the supposition quoted in [51] that the non-diagonal 
elements are of the same accuracy as the diagonal ones. 

In figure 3 we want to illustrate that the validity of the f sum rule is based on the 
number of the excited states considered. For the 3p core band, as well as for the first and 
third valence band, and k = (2n/a)(0.75,0.25,0.25), the sum 

n ' f n  Erik - E n ' k  

as a function of the upper limit N,,, is plotted. The broken lines on the right correspond 
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j i - - . - - - . . -0.4 4 

I 
0 20 40 60 80 100 

"0, 

Figure 3. Test of the f sum rule fork  = (2n/a)  (0.75,0.25,0.25) and the 3p band, the first 
and the third valence band. The full curves give equation (30) as a function of the number 
N,,, of bands summed over. The broken lines on the right mark the value derived from the 
second derivative. 

to the values derived from the second derivatives. From these results, we must conclude 
that even by summing up to the eightieth band, the final values are obtained with an 
error between 30% and 70% depending on the band considered. Similar results are also 
obtained in the case of the kinetic energy according to equation (26). Because of the 
poor convergence of the sum over the excited states, both relations turn out to be not 
suitable to test the validity of the non-diagonal elements of the momentum operatorp. 
As a similar sum occurs in the definition of the dielectric function, we expect that it 
may be evaluated with an error of 20-40%, provided that only 80 excited bands are 
considered. This result agrees well with the investigations by Ehrenreich and Philipp 
[22] who found that the oscillator strength for transitions into higher excited states is still 
distributed for the energy range of 2 Ryd above the Fermi energy. 

In order to decide whether the right- or the left-hand side of equation (27) is more 
accurate, we have also evaluated the sum (30) by substituting (n'k(pjlnk) by 
(m/h)(e,,, - enk)(d/d,,)(n', k + 41 exp(iq In general, this hasthe result that 
the f sum rule is slightly better fulfilled. Unfortunately, this way is numerically more 
complicated and needs higher accuracy. 

6. The long-wave limit of the dielectric function 

In order to limit the numerical work, the elements of the dielectric function and its 
inverse have been considered corresponding to reciprocal lattice vectors up to the second 
shell only. Even then the number of non-zero elements is large but as a consequence of 
the point group symmetry, which requires that 

ct.(P(q + K ) ,  P(4 + K ' ) ,  U> = a(q + K ,  4 + K ' ,  U )  (31) 
is fulfilled for any element P of the point group, there exists a small number of linear 
independent functions. Similar results also hold for the polarisation functions 
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aH(q + K ,  q + K ’ ,  w ) ,  ax,(q + K ,  q + K ’ ,  w )  and the inverse dielectric function 
&-l(q + K ,  q + K ’ ,  w ) .  In the specific case that one of the reciprocal lattice vectors K or 
K‘ is zero, because of equation (31) we may write 

a(q, K ,  0) = 4 ’ S(K7 0) + 0 ( q 2 )  

S ( P K ,  w )  = P - ’ S ( K ,  U) .  

(32) 

(33) 

in the long-wave limit. The vector functions S ( K ,  w )  transform as 

In a cubic crystal for lattice vectors up to the fourth shell there exists only one scalar 
function for each shell, such that 

S ( K ,  o) = Ka(0, K ,  w ) .  

a(q7 K ,  0) = (4 - K)a(O, K ,  U).  

(34) 

(35) 

Analogously, we have 

As long as we neglect the contribution due to exchange and correlation, the polarisation 
a H ( q  + K ,  q + K ’ ,  U )  as well as the modified dielectric function 

x H ( q  + K ,  4 + K ’ ,  U )  = (14 + KI/lq -k K’I)aH (4 + K ,  4 + K ‘ ,  w, (36) 

are symmetric with respect to K and K ‘ .  

6.1. The element ~ ( 0 ,  0, w)  

The frequency dependence of the leading dielectric function E ( O , O ,  w )  is shown in 
figure 4. 

In the course of the following discussions, it will become clear that it is reasonable 
to compare these spectra with the macroscopic dielectric function ~ ( 0 ,  w ) ,  which means 
that, even in the case of noble metals, local-field corrections might be neglected over a 
wide frequency range. Thus, we have plotted experimental results taken from Hagemann 
et a1 [25] and from Johnson and Christy [33]. The overall agreement between the theory 
and experiment on both the magnitude and the location of the structure is quite good, 
particularly near the interband onset. According to Janak eta1 [31], a stretching of the 
unoccupied band to higher energies would bring the theoretical curves closer to the 
experimental curves. Note that, since there is no arbitrary scaling factor in the theory, 
comparison with the experiment can be made in absolute terms. The interband absorp- 
tion edge lies at about hw = 0.14 Ryd. It is encouraging that the calculated amplitudes 
as well as the shape of the theoretical curve lie quite close to the experimental curves. 
Some discrepancies may be due to uncertainties in the experimental data or to the means 
by which measured quantities were extracted, especially Kramers-Kronig inversion of 
the reflectance data. 

The latter uncertainties might be avoided by considering the optical conductivity 
which is closely related to 

a(w)  = (hw/4n)&*(w).  (37) 

Using the multiple-reflection technique, Beaglehole et a1 [6] were able to compute a 
without Kramers-Kronig relations. This result is plotted in figure 5 together with the 
theoretical conductivity spectra (our results and those taken from Uspenski et a1 [51]). 
Once again the overall correspondence between theory and experiment is satisfactory 
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Figure 4. The dependence of the dielectric function E ( O , O ,  w )  on the energy fiw(Ryd): (a )  
real part; (b )  imaginary part. The broken curve describes the experimental results taken 
from [25] and the chain curve those quoted in [33]. 

in terms of the positions of the main structures and their absolute magnitudes. The hump 
at 1.20 Ryd corresponds well to the similar broad feature in the experimental curve at 
1.07 Ryd. The grouping of structures in the range 1.75-2.0 Ryd is certainly a conse- 
quence of the coarse grid used to perform the k-integration. Nevertheless, it is con- 
spicuous to assign it to the prominent broad structure in the experimental curve at 
1.88 Ryd. Generally speaking, the experimental curves are considerably smoother than 
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Figure 5. The dependence of the optical conductivity a ( w )  = (ho/4n)s2(w) on the energy 
hw(Ryd). The broken curve describes the theoretical results taken from [51] and the chain 
curve describes the experimental results taken from [6]. 

the theoretical curves, an effect which can be attributed to the finite lifetime of the final 
states. 

Most of the structure in the theoretical spectra could not uniquely be ascribed to 
transitions well localised in the Brillouin zone but have their origin in a bunch of 
transitions covering a large part of k-space. In accordance with [ll], the onset of the 
edge at 0.14 Ryd and the first peak at 0.40 Ryd are due to transitions from the uppermost 
d band into the hybridised s-p band close to the Fermi level. The broad hump at 1.20 Ryd 
could be associated with transitions between approximately parallel bands in the neigh- 
bourhood of the Z axis or the X point of the Brillouin zone. 

6.2. The elements x(K,  K’ ,  w)  with at least one non-zero reciprocal lattice vector 

In figure 6 the dielectric function x ( K ,  0, w )  for K = (2n/a)(l, 1, 1) is plotted. The full 
curves show the contribution due only to Coulomb interaction. It coincides completely 
with the function x ( 0 ,  K ,  w )  as in this case the contribution due to exchange is zero. 
Apart from the fact that these elements of the dielectric matrix are quite small in 
comparison with E ( O , O ,  w) ,  it is only remarkable that the contribution due to exchange 
is opposite to the direct Coulomb interaction and smooths the frequency dependence 
considerably. 

In the more general case when both reciprocal lattice vectors are non-zero, non- 
diagonal elements behave completely differently from the diagonal elements. From 
figure 7 which shows the diagonal elements in the case K = (2n/a)(l, 1 , l )  we learn that 
the real part of x ( K ,  K ,  w )  is quite large and weakly depends on the frequency. The 
contribution due to exchange seems to be almost constant and tends to lower the value 
of the real part by 15% and the imaginary part by approximately 40%. 

I 
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Figure 6. The dependence of the elementX(K, 0, w) on the energy hw(Ryd) withK = (2n/a)  
(1,1,1): (a )  real part; (b)  imaginary part. The broken curve incorporates the contribution 
due to exchange. 

In figure 8 a typical example of a non-diagonal element is plotted. All these curves 
have in common that the real part strongly varies with the frequency and may have 
different zeros. Its value ranges from -0.1 to 0.2. At U = 1.75 Ryd a singularity similar 
to the derivative of a &function is to be seen. By a detailed analysis of the contributions 
coming from different k-points we have found that this is attributed to a transition near 
the point k = (2n/a)(Q,  Q, Q) from the sixth to the fourteenth band. In this case the 
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Figure 7. The dependence of the element ,y(K, K ,  w)  on the energy hw(Ryd) withK = (2n/a) 
(1, 1 , l ) .  For further details see figure 6. 

contribution due to exchange turns out to be quite small. The imaginary part of the non- 
diagonal elements is comparable with that of the diagonal elements. Again exchange 
corrections are quite small and the peak at o = 1.75 Ryd is present. 

7. The long-wave limit of the inverse dielectric function 

As long as we restrict ourselves to reciprocal lattice vectors up to the fourth shell, explicit 
expressions for the inverse dielectric function may be derived by following a procedure 
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Figure 8. The dependence of the element x ( K ,  K ' ,  U) on the energy hw(Ryd) with 
K = (2n/a)  (2 ,0 ,0)  andK'  = (2n/a) (-2,0,0). For further details see figure 6. 

originally proposed by Pick er a1 [45] and later used by Johnson [32] .  For that purpose, 
we introduce the submatrix y ( K ,  K ' ,  U )  which is the inverse of the lower-right part of 
the matrix x ( K ,  K ' ,  U) corresponding to non-zero reciprocal lattice vectors 

2 y ( K ,  K", u ) E ( K ,  K ' ,  0) = 
K" 

Note that both submatrices y and E are independent of the q-vector. Using the explicit 
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expressions for the elements x ( q ,  K ,  w )  and x ( K ,  q, w )  as defined by equations (34) and 
(35), simple matrix manipulations yield the following results: 

x- ' (0 ,0 ,  w )  = ( x ( O , O ,  w )  - a E E ( K  * K')a(O, K ,  w)y(K ,  K ' ,  w)a(K' ,  0, 0)) - 1  

%-Yo, K ,  w )  = - [ ( q  ' K>/lqll~(o, K ,  0) 

x - v ,  0 , o )  = - [ (q  - K)/lqllt(K, 0, w )  

K K' 

(39) 
(40) 

(41) 

(42) 

x - ' ( K ,  K ' ,  w )  = y ( K ,  K ' ,  w )  

+ (q*K)(q.K') /q2 [ x - ' ( O , O ,  w)l- '7 (KO,  w)z (O,K ' ,  w).  

Similar to a(0, K ,  w )  and a(K, 0, w )  the scalar functions t(K, 0, w )  and t(0, K ,  w )  are 
the same for each shell and are defined by 

K t ( K ,  0, w )  = x-'(O, 0, U )  2 y ( K , K ' ,  w)K'a(K', 0, 0) 

K t ( 0 ,  K ,  U )  = x-'(O, 0, w )  E K ' a ( O , K ' ,  w ) y ( K ' , K ,  U).  

(43) 

(44) 

K'  

K 

For nearly all frequencies the elements x ( O , O ,  w )  dominate all other elements with the 
consequence that, according to (39), x-'(O, 0, w )  approximately coincides with the 
inverse of x ( O , O ,  0) and is quite small. From equations (43) and (44) it follows that the 
scalar functions z ( K ,  0, w )  and z(0, K ,  w )  will also be small for nearly all frequencies. 
This is also true for the second term in equation (42) which causes the matrix elements 
x- ' (K,  K ' ,  w )  to depend on the orientation of the wavevector q even in the case of the 
vanishing absolute value. 

This general behaviour is confirmed by the numerical results which have been 
obtained by direct matrix inversion. To save space, only the frequency dependence of 
some characteristic elements of the inverse matrix x - l ( q  + K ,  q + K ' ,  w )  are plotted. 

Figure 9 shows a comparison of the element x-'(O, 0, w )  with the reciprocal value of 
the element x ( O , O ,  w )  defined in the usual way as 

l/x(O, 0, w )  = [Xl(O, 0 , o )  - ix2(0, o>w)l/[x:(o, 0 , w )  + x@, 0, 011. (45) 
Over a wide range of frequencies, both curves coincide for the real as well as for 
the imaginary part. Even the greatest differences occurring in the frequency range 
0.85 Ryd G w G 1.6 Ryd and 2.0 Ryd s w S 2.5 Ryd are less than 5%.  These results 
explicitly confirm that in equation (39) the contribution due to the double sum is for 
most frequencies quite small with respect to x ( O , O ,  U) .  Thus, local-field corrections 
have a slight influence on the  macroscopic dielectric function in the long-wave limit. 
This justifies the comparison of the element x ( O , O ,  w )  with the experimental spectra 
~ ( 0 ,  U )  performed in section 6.1. As inclusion of exchange has no influence onx(O,O, 0) 

the corresponding corrections are only expected in those regions where xW1(0,O, w )  
differs from 1/x(O, 0, w) .  These corrections turned out to be up to 2%. 

Figure 10 shows typical examples of diagonal elements of x- ' (K ,  K ,  w )  with non-zero 
reciprocal lattice vectors. The real part turns out to be close to 1.0 and to have a weak 
frequency dependence. In the frequency range considered, the imaginary part steadily 
increases with increasing frequency and possesses the peculiar structure at 1.75 Ryd 
common to all spectra. Inclusion of the exchange decreases the imaginary part by a 
factor of up to 1.6, whereas the real part is increased by less than 15%. 
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Figure 9. The dependence of the element x-'(O, 0, w) and of l/x(O, 0, w) on the energy 
hw(Ryd): (a )  real part; (b)  imaginary part. The broken curve incorporates the contribution 
due to exchange in x-'(O, 0 , w ) .  

According to equation (42) the diagonal elements with non-zero reciprocal lattice 
vectors should depend on the orientation of the q-vector even in the long-wave limit. 
This is due to the functions z(K, 0, U) and z(0, K, w )  which are found to be very small, 
apart from the region where x-l(O, 0, o) differs from 1/x(O, 0, 0). 

Again in figure 10 the reciprocal function of x ( K ,  K, o) defined analogously to 
equation (45) is plotted in order to  demonstrate that in this case the local-field corrections 
areratherimportant. A t  lowfrequencies, we have found thattherealpartofX-'(K, K, o) 
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Figure 10. The dependence of the diagonal elementX-'(K, K, w) and of l / x ( K ,  K ,  U )  on the 
energy fiw(Ryd) with K = (2rc/a) (1,1,1): (a) real part; (b) imaginary part. The broken 
curves incorporate the corresponding contributions due to exchange. 

is approximately 12% larger than [ l / x ( K ,  K ,  u ) ] ~ ;  with increasing frequency the dif- 
ference becomes smaller and in the frequency range 1.5 Ryd S U S 2.5 Ryd both curves 
come quite close. The value obtained in the static limit fits quite well with the results 
derived by Kubo [38]. For q = (2n/a)(0.5,0.5,0.5) the corresponding values for 
x-'(q,  q, 0) and l / x (q ,  q, 0) are 0.3867 and 0.3390, respectively. Local-field corrections 
have a still greater influence on the imaginary part. At low frequencies, - [x - ' (K ,  K ,  U ) ] ~  
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is a half and at a higher frequency two thirds of -[l/x(K, K, w ) ] ~ .  Thus, up to 1.25 Ryd 
the corrections due to exchange exceed those due to the local-field effects. Finally, we 
note that the inversion of the dielectric function causes a smoothing of the inverse 
function. Only those features which are common to all elements of the dielectric matrix 
will survive, e.g. the peak at 1.75 Ryd. 

To save space, we would like to mention only that all non-diagonal elements are 
found to be by more than an order of magnitude smaller and, in most cases, more 
dependent on the frequency than are the diagonal elements. The influence of the 
inclusion of exchange is not unique. In some cases it yields a considerable increase and 
in other cases a decrease in the matrix elementsx-'(K, K ,  0). 

8. Conclusion and summary 

The present paper has two major results. First, it demonstrates that the investigation 
based on band-structure results suffers from the fact that the real part of the dielectric 
function &(q + K, q + K', w )  can be derived only with limited accuracy as the number of 
interband transitions to higher bands is limited. In the specific case where up to 70 
eigenstates above the Fermi level have been considered, the accuracy for the diagonal 
elements has been found to be 20-30%. As the final energies &,k are restricted by the 
energy conservation &,k S EF + hw, these difficulties do not occur with the imaginary 
part and thus we expect it may be computed with higher accuracy. Second, as for most 
frequencies the element E ( O , O ,  w )  dominates all other elements of the dielectric matrix, 
we have found in the long-wave limit that neither the local-field corrections nor many- 
body corrections which follow from the TLDF have a significant influence on the element 
&-l(O, 0, w )  of the inverse matrix. Therefore, the macroscopic dielectric function ~ ( 0 ,  o) 
is well approximated by the element E ( O , O ,  w) .  As the incompleteness of the final state 
has a lesser influence on ~ ~ ( 0 ,  w )  than on ~ ' ( 0 ,  w ) ,  comparisons with experimental 
~ ~ ( 0 ,  w )  are more promising, provided that such information is available and not 
obscured, for example, by a Kramers-Kronig inversion of the experimental data. 

For non-vanishing reciprocal lattice vectors the influence of the local-field corrections 
as well as the influence of many-body corrections are not negligible. The latter cor- 
rections are found to enforce the shielding over the whole frequency region, whereas 
the former yield a fractional decrease in the shielding at lower frequencies. Further 
investigations are desirable in order to decide whether it is appropriate to approximate 
the many-body effects by 

axc(q + K, q + K', w )  = (1q + K12/4ne2)F(K)aH(q + K, q + K', a) (46) 
- 

where F(K)  is the Fourier coefficient of the leading spherical contribution of d Vxc/dp. 
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